Conditional Restricted Boltzmann Machines for Negotiations in Highly Competitive and Complex Domains
نویسندگان
چکیده
Learning in automated negotiations, while useful, is hard because of the indirect way the target function can be observed and the limited amount of experience available to learn from. This paper proposes two novel opponent modeling techniques based on deep learning methods. Moreover, to improve the learning efficacy of negotiating agents, the second approach is also capable of transferring knowledge efficiently between negotiation tasks. Transfer is conducted by automatically mapping the source knowledge to the target in a rich feature space. Experiments show that using these techniques the proposed strategies outperform existing state-of-the-art agents in highly competitive and complex negotiation domains. Furthermore, the empirical game theoretic analysis reveals the robustness of the proposed strategies.
منابع مشابه
Cumulative Restricted Boltzmann Machines for Ordinal Matrix Data Analysis
Ordinal data is omnipresent in almost all multiuser-generated feedback questionnaires, preferences etc. This paper investigates modelling of ordinal data with Gaussian restricted Boltzmann machines (RBMs). In particular, we present the model architecture, learning and inference procedures for both vector-variate and matrix-variate ordinal data. We show that our model is able to capture latent o...
متن کاملMaterial for : Factored Conditional Restricted Boltzmann Machines for Modeling Motion Style ∗ Graham
In this document, we provide additional details for variants of Conditional Restricted Boltzmann Machines (CRBMs). Specifically we focus on each of the four models compared in the Quantitative Evaluation (Sec. 4.4). We collect the formulae required for contrastive divergence learning of parameters, synthesis from a trained model by alternating Gibbs samping, and forward prediction from a traine...
متن کاملConditional Restricted Boltzmann Machines for Multi-label Learning with Incomplete Labels
Standard multi-label learning methods assume fully labeled training data. This assumption however is impractical in many application domains where labels are difficult to collect and missing labels are prevalent. In this paper, we develop a novel conditional restricted Boltzmann machine model to address multi-label learning with incomplete labels. It uses a restricted Boltzmann machine to captu...
متن کاملMixing Rates for the Alternating Gibbs Sampler over Restricted Boltzmann Machines and Friends
Alternating Gibbs sampling is a modification of classical Gibbs sampling where several variables are simultaneously sampled from their joint conditional distribution. In this work, we investigate the mixing rate of alternating Gibbs sampling with a particular emphasis on Restricted Boltzmann Machines (RBMs) and variants.
متن کاملEcho-State Conditional Restricted Boltzmann Machines
Restricted Boltzmann machines (RBMs) are a powerful generative modeling technique, based on a complex graphical model of hidden (latent) variables. Conditional RBMs (CRBMs) are an extension of RBMs tailored to modeling temporal data. A drawback of CRBMs is their consideration of linear temporal dependencies, which limits their capability to capture complex temporal structure. They also require ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013